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Although the concept of the photon as a quantum
particle is sharpened by the quantization of the energy of
the classical radiation field in a cavity, the photon's spin
has remained a classical degree of freedom. The photon is
considered a spin-1 particle, although only two classical
polarization states transverse to its direction of
propagation are allowed. Effectively therefore the photon
is a spin-1/2 particle, although it still obeys Bose-
Einstein statistics because the photon-photon interaction
is zero.

Here we show that the two polarization states of the
photon can be quantized using Pauli's spin vector, such that
a suitable equation of motion for the photon is Dirac's
relativistic wave equation for zero mass and zero charge.
Maxwell's equations for a free photon are inferred from the
Dirac-field formalism and thus provide proof of this claim.

For photons in the presence of electronic sources for
electromagnetic fields we posit Lorentz-invariant
inhomogeneous photonic equations of motion. Electro-
dynamic operator equations are inferred from this modified
Dirac-field formalism which reduce to Maxwell's equations
if spin-dependent terms in the radiation-matter interac-
tion are dropped.
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I. Introduction

It is generally believed that spin-1/2 particles obey Fermi-
Dirac statistics. The photon on the other hand effectively has two
polarization states transverse to its direction of propagation and
yet is known to obey Bose-Einstein statistics. This phenonmenon
is explained by saying that the photon is a spin-1 particle,
not withstanding the supression of one of its three polarization
states by transversality. Although the concept of the photon as a
quantum particle is sharpened by the quantization of the energy of
the classical radiation field in a cavity [1], it's polarization or "spin"
states are treated classically, and in this sense the photon is not
completely quantized as compared with other quantum particles.

Would the quantization of the photon's two polarization states as

a spin-1/2 particle violate Bose-Einstein statistics? It would not
because the photon-photon interaction is zero. Conversely would a
theory ignoring the electron's spin violate Fermi-Dirac statistics?
Obviously it would not: for example the Schroedinger description of

the electronic problem does not depend on spin. The exclusion of



more than two electrons from a single orbital in the many-electron
problem arises, not from the spin property of an individual electron,
but rather from the symmetry of the Hamiltonian with respect to
particle interchange. It is only through a Zeeman or some other
electron-polarization experiment that we learn about the spin
degree of freedom of the electron.

On the other hand if the electron lost its charge, it would still be
a spin-1/2 particle but, having zero interparticle interaction, it
would obey Bose-Einstein statistics. In this paper we show that
a suitable equation of motion for the photon, in which its two
polarization or "spin" states are also quantized, is the Dirac
equation for zero mass and zero charge. Maxwell's equations for a
free photon can be inferred from the Dirac-field formalism and thus
provide proof of this claim. From the new point of view the standard
quantization of the classical radiation field [1] is in reality a second
quantization of a relativistic quantum field for a mass-0, spin-1/2
particle.

The plan of the paper is as follows. In section |l we show that
each of Dirac's pair of first-order equations can be factorized into
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the scalar product of four-vectors for electron momentum and
electron spin. Hence each first-order equation is a Lorentz invariant
since the scalar product of four-vectors is always a Lorentz
invariant. The generality of this result suggests that first-order
Lorentz-invariant equations of motion can be written as the scalar
product of momentum and spin four-vectors for any particle,
including the photon. We assign Dirac's equation for zero mass and
zero charge to the photon and show that Maxwell's equations
for a free photon can be inferred from the Dirac-field formalism.
In section lll we show that electrodynamic operator equations
follow from the Dirac-field formalism once it is modified by
positing Lorentz-invariant inhomogeneous electronic sources for
electromagnetic fields. Maxwell's equations are inferred from this
set by dropping all spin-dependent terms in the radiation-matter
interaction.

In section IV we present our conclusions.



I. Lorentz-invariance of Dirac's first-order equations;
photonic equations of motion from which Maxwell's
equations for a free photon can be inferred

In this section we show -for the first time to our knowledge -
that Dirac's pair of first-order equations can be written as the
scalar products of a pair of four vectors and hence are themselves a
pair of Lorentz invariants. Hitherto it was known that Dirac's
Hamiltonian is a Lorentz invariant such that the Lorentz covariance
of his equation required a separate proof [2].

Dirac's equation, or the Dirac-Fock equation as appropriate, is
used for example to calculate high-Z atomic structures [3}], high-Z
materials' equations-of-state [4], or electron or positron inelastic
cross sections from highly-stripped ions [5]. It is also used in
particle physics as a field theory for spin-1/2 particles and their

interactions.

We write a pair of Lorentz invariants first as the scalar product

(%(iﬁi—cd)—mcz, ﬂiV+%K)
of the electron four-momentum ot and the

—

wave-function four-vector W O¥s) and second as the scalar

(l(i‘ﬁ'—a —e<I)+mc2, iﬁV+9-K)
C ot C
product of the electron four-momentum
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and the wave-function four-vector ¥s VL) giving identically
Dirac's pair of first-order equations,

L2 -t -me) v+ 0V + 2Ry y=0
C ot C
(1a)

%(iﬁi- e® + mc?) \ys+;-(iﬁ§ +%1—§) y =0
ot ’ (1b)

—

where © is Pauli's vector and the wave functions are the large (L)
and small (S) two-component spinors.

This set of equations generally describes a spin-1/2 particle of
arbitrary mass, although Dirac originally derived the set for the
electron. For example the neutrino is described by Egs. (1) with
mass m and charge e set equal to zero.

The scalar product of two four-vectors is always a Lorentz
invariant. Hence each equation of Egs. (1) is a Lorentz invariant in
which the Lorentz constant is zero. Next we reconcile our derivation
of Egs. (1) with the traditional presentation of Dirac's equation.

Dirac's four-component Hamiltonian divided by ¢ can be written by

setting the scalar product of the four-vectors o =) and

& ik 9. ed), i#v-© A)
[o at C
equal to mc,
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E(ﬂfi—c@nﬁ}-(; +ZA) =mc
¢ ot ¢ (2)

where Yo=B and,

0 -1/lo 0 . (3)
It is understood that the four-component Hamiltonian given by
YL
Eq. (2) operates on the column vector of large and small two-

¥s
component spinors. Operating with Eq. (2) on the column vector we

obtain identically Egs. (1).

The generalized Lorentz conditions given by Eqgs. (1) provides an
independent proof of the covariance of Dirac's equation. If the
quantum mechanical equations of motion are themselves a pair
of Lorentz invariants, as well as the Hamiltonian, then Dirac's
equation must surely be covariant. Dirac's procedure for deriving his
equation, in which the Lorentz invariant is the Hamiltonian [Eq. (2)],
requires a second step to prove covariance [2] of his equation. The

Lorentz invariance of each of his pair of first-order equations as a



product of four-vectors was not recognized at the time or to our
knowledge in later studies.

In view of the factorizbility of each member of the set of
equations into the product of a four vector for momentum and a
four-vector for spin, one might ask if the set for mass-0, which is
assumed to be the correct equation of motion for the neutrino, might
also be suitable as an equation of motion for the photon, where
Pauli's vector is used to represent the two polarization states of the
photon transverse to its direction of propagation. The bosonic
character of the photon however is preserved by its zero photon-
photon interaction Hamiltonian. This would seem to be a point of
confusion in the literature: fermionic character depends on the
symmetry of the many-particle Hamiltonian with respect to the
interchange of particle labels and not on the spin-1/2 nature of an
individual particle. The many-fermion wave function is requied by
the Pauli exclusion principle to be antisymmetric with respect to
the interchange of particle labels including the spin label. However
it is the symmetry of the Hamiltonian with respect to the exchange
of identical particles which causes the spatial wave function to
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separate into either even or odd symmetry with respect to the
interchange of particle labels. If the interparticle interaction is
zero, as it is for the photon, then Pauli exclusivity with respect to
orbital occupancy by many particles does not occur, regardless of
the spin characterof an individual particle. In such cases one learns
of the spin-property of the particle from polarization experiments,
as in the case of the photon.

Here we pose Eqs.(1) with zero mass and zero charge,

§M+ it ;‘G‘l’s= 0

ot (4a)
%?—W—S +if ;'G\Ifﬁ 0

o : (4b)

as suitable equations of motion for the photon.

Now using the identity and definitions ,

] (00V)=V+i(€xc) (5a)
oy, =H (5b)
tovs=FE | (50)

two operato‘r Maxwell equations follow from each of Egs. (4) by



-

operating on each from the left with O and then again operating on

the result with O . From Eq. (4a) we obtain the equation,

G‘(—lé—é-I;I--F VXE)—iV-E=0
ot ] (6)

Two of Maxwell's equations can be inferred from Eq. (6),

V°E=0 (7a)
l a—H + ; E 0
¢ o , (7b)

where we have recognized that Eq. (7a) is the gauge condition

appropriate for vanishing electronic charge; Eq. (7b) follows by

Ead

equating the vector coefficient of © equal to zero.
From Eq. (4b) we obtain the equation,

.(laa_E—VxH)HV-H 0

t . (8)

The other two Maxwell's equations can be inferred from Eq. (8),

VeH=0 (9a)
LE 5,
ot , (Sb)
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where we have recognized that Eq. (9a) is the gauge condition

J

appropriate for the magnetic field since H=V XA where A s the

vector potential; Eq. (9b) follows by equating the vector coefficient

—

of O equal to zero.

Egs. (7) and (9) are identically Maxwell's equations in a vacuum.
The operator character of the equations is no longer explicit, such
that the result of classical electrodynamics is recovered. In other
words one may evaluate the fields in the standard way by using a
unit vector in the direction of polarization.

We regard the recovery of Maxwell's equations as proof of our
claim that Dirac's equation for zero mass and zero charge is a
suitable equation of motion for the photon. Dirac's original
motivation was to derive a Lorentz-invariant equation of motion for
the electron which was first-order in space and time. Now it
appears that his result has a generality which he probably did not
anticipate. The spin-1/2 nature of the Dirac particle is a sufficient
condition for the Lorentz invariance of the equations of motion such
that it contains implicitly the laws of electrodynamics. Finite
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particle mass is associated with the branching of the energy and
with matter and antimatter states. Finite particle mass and charge
are associated with the particle's magnetic moment.

The interpretation of classical versus nonclassical behavior in

electrodynamics would seem to be impacted by our result. Obviously

-~

one can expand the vector potential A in a mode series whose
operator coefficients are specified by quantization of the
electromagnetic energy in a cavity [1]. As we have shown however
the mass-0, spin-1/2 relativistic quantum field is already
quantized, and Eqgs. (4) are the quantum equations of motion.

Planck's constant factors from the equations of motion only for zero
mass and zero charge, such that the standard interpretation of the
electrodynamic equations is a classical one. From the new point of
view however the electrodynamic equations can be evaluated as

operator equations whose eigenstates are the two-component

—

spinors. Thus the standard representation of A in terms of field
operators [1] can be re-interpreted as the second quantization of the

relativistic quantum field for a mass-0, spin-1/2 patrticle.
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ll. Electrodynamics equations for photons in the presence
of electronic sources for electromagnetic fields; reduction
to Maxwell's equations ignoring spin in the radiation-
matter interaction

In this section we show that electrodynamic equations can be
derived by positing Lorentz-invariant inhomogeneous terms, which

represent electronic sources for electromagnetic fields, in the

photonic equations of motion. We posit the equations,

B VL g7 we= 8,

ot 3 (10a)
;rgﬁ_w_er fH;-g V= 4neh P,

ot , (10b)

where Pg is the Lorentz-invariant density formed from the scalar

—_—

product of the four-spin (1,=9) and the electronic four-density

(p,3/0),
pg=p-cd/c (11)

where p is the electronic density and j is the electronic
current. Each one of Egs. (10) is a conservation equation which

reads,
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Momentum times photonic field strength =
Momentum times electronic field strength, (12)
where the left-hand-side and the right-hand-side of each equation is

a Lorentz invariant.

—_— —

Now using the identities given by Eqgs. (5) augmented by G-0=3

two operator Maxwell equations follow from each of Egs. (10) by

-

operating on each from the left with © and then again on the result

—_—

with © . From Eq. (10a) we obtain the equation,
o-(%a—H+VxE)—iV-E=-4nie P,
ot . (12)

Two of Maxwell's equations can be inferred from Eq. (12),

V'E=47tepg’ (138.)

—l—a—H+VxE=O

MO (13b)

where we have recognized that Eq. (13a) is the gauge condition

appropriate for finite electronic charge; Eq. (13b) follows by

—

equating the coefficient of ¢ equal to zero.
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From Eq. (10b) we obtain the equation,

oéE—VIH%JJHWHO

ot : (14)

The other two Maxwell's equations can be inferred from Eq. (14)

V-H=0 (15a)
%QE—V H_—ﬂﬁi
ot (15b)

where we have recognized that Eq. (15a) is the gauge condition

appropriate for the magnetic field; Eq. (15b) follows by equating the

—

coefficient of O equal to zero. The generalized current is defined,

—

Ty=-cop, (16)
These equations reduced identically to the classical Maxwell
equations by dropping all spin-dependent terms on the right-hand-
sides of Eqgs. (13a) and (15b). To show this result for Eq. (15b) one

must use Eqgs. (11) and (16) and the identity,

—  —

6 (c-T)= J+1(ch) (17)
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IV. Conclusions

The operator electrodynamical equations derived here follow
from Dirac's original ansatz [Eqgs. (1)] and from our conservation
ansatz given by Eq. (10). We have been guided by our discovery that
each of Dirac's pair of first-order equations is factorizable into the
scalar product of a four-vector for momentum and a four-vector for
spin such that each equation is a Lorentz invariant.

The correctness of Dirac's set of homogeneous equations for the
motion of a spin-1/2 particle seems beyond question. The
correctness of our set of inhomogeneous equations [Eqgs. (10)] for
photonic motion in the presence of electronic sources for
electromagnetic fields is supported at this point only by the correct
form of the operator electrodynamical equations which follow and
from their reduction to Maxwell's equations by ignoring all spin-
dependent terms in the radiation-matter interaction.

It should be noted that the reduction to Maxwell's equations
destroys the Lorentz invariance of the electrodynamical equations.
Maxwell's equations are Lorentz invariant only for free photons, and
one may wonder if the absence of Lorentz invariance in Maxwell's
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equations for photons in the presence of electronic sources for
electromagnetic fields underlies the controversial nature of all so-
called neoclassical or self-field theories used to describe the Lamb
shift of the atom.
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